Genomic Medicine Education at UCSF

Genomic medicine has the potential to fundamentally shift how healthcare is practiced.  Yet, efforts to translate new genomic tests into clinical practice are hindered by an under-educated healthcare workforce. At UCSF, our aim is to address the education gap in this rapidly evolving field so that health care providers can evaluate and deliver genomics in the course of clinical care.

We offer training opportunities to current UCSF trainees as well as non-UCSF students through our outreach programs.  UCSF trainees can choose from individual courses and programs to best suit their needs.

UCSF Graduate Division | UCSF Medical School | UCSF School of Nursing | UCSF School of Pharmacy

UCSF Graduate Division

The UCSF Graduate Division provides outstanding education and training in basic and translational, social and population, and clinical sciences where genomics is a key component. A variety of programs are available to accommodate different students interests.

BMS is an interdisciplinary graduate research program that equips students with the training and research tools to study the function of tissue and organ systems in development, physiology, and disease. The study of these higher levels of biological systems integration represents one of the most important challenges in modern cell and molecular biology.

Individual Courses

255 —  Basic Genetics & Genomics
211 — Human Evolution and Population Genetics

The PSPG prepares independent, creative leaders in the pharmaceutical sciences and in the application of genetics and genomics to the development of safe, effective drugs. A PhD from the PSPG program trains students to apply human genetics principles to understand the mechanistic basis for drug action and toxicity and to identify genetic markers that can be used to optimize drug therapy.

Individual Courses

219 —  Special Topics in Pharm Sci and Pharmacogenomics
245C — Principles of Pharmacogenomics
297 — Pharmaceutical Sciences and Pharmacogenomics Journal Club

The BMI program prepares scientists to harness and apply the power of data to understand the complexities of human biology. It equips PhD students with the skills and knowledge in applied mathematics, informatics, statistics, computer science, physics, chemistry, and biology needed to study biological composition, structure, function, and evolution at the molecular, cellular, and systems levels. The field is essential, for without quantitative analysis of the massive and growing amounts of biological data generated by various systems, biology and -omics data cannot be interpreted or exploited.

Individual Courses

208 — Computational Evolutionary Genomics

UCSF School of Medicine

Medical students at UCSF have an opportunity to learn about genomic medicine during both undergraduate and graduate training, including programs in Medical Genetics and Genetic Counseling.

Undergraduate Medical Education in Genetics/Genomics

Director: Katherine Hyland, PhD

The UCSF Medical Genetics/Genomics curriculum is integrated throughout the Essential Core courses in the first two years of medical school, connecting to content from other disciplines. (http://meded.ucsf.edu/ume)

Year 1: We begin with basic principles of inheritance and human disease (Prologue block), and continue with principles of complex inheritance, genetic susceptibility and whole genome analysis, using Cardiovascular disease as the exemplar (Organs-CV block). Inborn errors of metabolism (Metabolism and Nutrition) and neurogenetics (Brain, Mind, Behavior) are covered later in the first year.

Year 2: We explore molecular genetic basis of cancer and hereditary cancer syndromes (Mechanisms, Methods and Malignancies), and clinical reproductive genetics (Life Cycle).

 

Directors: Katherine Hyland, PhD
The program is taught by a team of Genetics Faculty

IDS 170.03 Genomic and Precision Medicine Elective (2 units)

Course Description
This course provides students with an opportunity for in-depth analysis of genomic testing, including ethical/legal/social issues, process of informed consent, multidisciplinary application, data analysis, interpretation and communication of test results, clinical utility and future applications of genomics in medicine. There is an opportunity for students to participate in pharmacogenomic testing and counseling utilizing their own personal data. Students who wish to opt-out will be provided with proxy genetic test results.

Course Objectives

  • Describe the clinical utility of genomic testing, and the potential impact on medical practice now and in the future.
  • Describe the ethical, legal, social and economic issues associated with genomic testing, including how genomic data is legally protected and how that impacts health care profession utilization.
  • Describe the approach and principles of genetic counseling and obtaining patient informed consent.
  • Describe the uses, limitations and information obtained from important and current genomic testing methods.
  • Describe the approach to interpretation of genomic test results, including translation of raw data to clinical utility, and explain the implications of genomic test results in a patient centered manner.
  • Compare & contrast clinically actionable information obtained from pharmacogenomic tests versus tests used for multifactorial disorders or Mendelian disorders.
  • Understand basic and important statistical concepts required to interpret and evaluate genomic tests.
  • Integrate and apply the principles and concepts of this course to real case examples.

Topics

  • Introduction to Genomic and Precision Medicine: Opportunities & Challenges
  • Ethical, Legal, Social and Economic Considerations in Genetic & Genomic Testing; Informed Consent
  • Genetic Counseling & Pharmacogenomic testing
  • Genetic & Genomic Testing Methods & Technologies
  • Pharmacogenomics
  • Interpretation of Pharmacogenomic Data & Test Results
  • Whole Exome Analysis: Rare Variant Interpretation
  • Multifactorial Disorders and GWAS
  • Analysis of Common Polymorphisms for MF Disorders
  • Clinical Application of Genomic Medicine: Present and Future

For more information, please contact Katherine Hyland

MS2 Student Organizers: Ruiji Jian, Trisha Macrae, Aaron Wuiggle, Pooja Shah, Lena Sweeney, Shane Walker
Faculty Advisors: Katherine Hyland, PhD and Mary Norton, MD

MISSION
The genetics/genomics student interest group (GGSIG) is a student-run organization founded to:

  • Provide resources and opportunities for students to explore their interest in genetics/genomics
  • Educate students about the impact of genetics/genomics on current and future clinical medicine
  • Connect medical students with local experts in genetics/genomics from clinical medicine and basic science
  • Provide career guidance and mentorship for students interested in pursuing genetics/genomics

First kick-off Meeting
Monday, October 13, 2014, 5:30-7pm
Parnassus Campus, Medical Sciences Building, Room S-157

Graduate Medical Education in Genetics/Genomics

The Medical Genetics Residency Program program trains physicians in genomic-based medical care along with their primary residency. Our trainees learn to apply molecular testing, high-throughput sequencing, cytogenetic techniques, and to provide comprehensive care for patients with a variety of medical conditions. The background of our residents is typically in pediatrics, internal medicine, obstetrics/gynecology, or family medicine; however physicians from many specialties are considered.

UCSF offers a Master of Science in Genetic Counseling to students interested in pursuing a career in healthcare services that combines medical genetics knowledge and counseling skills.  The program is offered jointly with California State University (CSU).

The ABMG fellowship is offered through the Division of Medical Genetics.  The goal of this laboratory fellowship program is to train individuals with a doctoral degree (M.D., D.O. and/or Ph.D.) to perform and interpret genetic laboratory analyses relevant to the diagnosis and management of human genetic diseases.

The MGP program is one year ACGME-accredited fellowship offered through the UCSF Departments of Pathology and Laboratory Medicine includes training in the areas of cancer genetics (solid tumors and hematopathology), inherited disease, infectious disease, forensics, pharmacogenomics and cytogenetics. Fellows learn the methodologies used to perform molecular testing, how to interpret and report test results, how to develop and validate new testing, how to oversee a molecular pathology laboratory, and how to serve as consultants to the clinical services.

UCSF School of Nursing

Nursing students at UCSF can choose from several genomics-related courses to take during their training. For those interested in more in-depth study, our Nursing Masters students have the opportunity to elect a minor in genomics.

UCSF offers a Masters of Science Genomics Minor for nursing students. The Minor was designed to provide a spectrum of content related to human genomics and includes: basic genomic science; genetic variation and patterns of inheritance; genetic basis of disease (cancer, cardiovascular, gerontology disorders); genetic screening and diagnosis; pharmacogenetics; genetic therapies; and the ethical, social and policy implications related to genetic information technology for culturally competent health care delivery.

Individual Courses for Nursing Students

294A  Introduction to Human Genomics
301.27A  Genomics Skills Lab
414.27A  Genomics Clinical Practicum
294B  Medical Genetics for Nursing

UCSF School of Pharmacy

The UCSF School of Pharmacy is one of the first pharmacy schools in the nation to offer its students genetic testing for drug response through Genetics and Pharmacogenomics, a course open to first year pharmacy students each Spring.